2017年IOAA理论第9题-星系物质外流

来自astro-init

英文原题

Galactic Outflow [20 marks]

Cannon et al. (2004) conducted an HI observation of a disk starburst galaxy, IRAS 0833+6517 (IRAS 08339+6517), with the Very Large Array (VLA). The galaxy is located at a distance of 80.2 Mpc [1] with an approximate inclination angle of 23 degrees. According to the HI velocity map, IRAS 0833+6517 appears to be undergoing regular rotation with an observed radial velocity of the HI gas of roughly 5850 km/s at a distance of 7.8 kpc from the centre (the left panel of the figure below).

Gas outflow from IRAS 0833+6517 is traced by using the blueshifted interstellar absorption lines observed against the backlight of the stellar continuum (the right panel of the figure). Assuming that this galaxy is gravitationally stable and all the stars are moving in circular orbits,

a) Determine the rotational velocity ($$v_{rot}$$) of IRAS 0833+6517 at the observed radius of HI gas. [5]

b) Calculate the escape velocity for a test particle in the gas outflow at the radius of 7.8 kpc. [9]

c) Determine if the outflowing gas can escape from the galaxy at this radius by considering the velocity offset of the C II(λ1335) absorption line, which is already corrected for the cosmological recessional velocity. (The central rest-frame wavelength of the CII absorption line is 1335 Å.) (YES / NO) [6]

Image.png


中文题目

星系物质外流 (20分)

Cannon et al. (2004) 对一个星暴盘星系(IRAS 0833+6517)用甚大天线阵(VLA)来探测中性氢(HI)的分布。该星系距离我们 80.2 Mpc远,盘面倾角约 23 度。根据中性氢的速度分布可看出 IRAS 0833+6517 绕中心旋转,在离星系中心的 7.8 kpc 的某一点观测到的视向速度为 5850 km/s (如左图所示)。

IRAS 0833+6517 的气体外流情况可以根据背景恒星连续谱上星际吸收线的蓝移程度来判定(如右图所示)。这里假设该星系是稳定的自引力体系且所有的成员恒星都以圆轨道绕转星系中心,

a)通过中性氢分布,计算 IRAS 0833+6517 在被观测过的某个点的旋转速度($$v_{rot}$$)。(5分)

b)在离星系中心 7.8 kpc 远的地方,如果一个粒子要外流,其逃逸速度多少?(9分)

c)通过 C II(λ1335)吸收线所反映出来的速度偏差(横坐标已用宇宙学红移改正),请问在这个半径上向外流的气体是否能流出星系?(6分)

解答

a) IRAS 0833+6517的距离已经给定(80.2 Mpc),根据哈勃公式:

$$v_{gal} = H_{0}D$$

其中,哈勃常数:$$H_{0}$$ = 67.8 km⋅ s−1 ⋅ Mpc−1

这样就能得出星系自身的退行速度:$$v_{gal}$$ = 67.8 km⋅ s−1 ⋅ Mpc−1 $$\times$$ 80.2 Mpc = 5437.56 km s−1

由于在星系盘上的某处测量的速度值为:$$v_{rad}$$ = 5850 km⋅ s−1,该星系的盘面倾角为:i = 23 $$^{\circ}$$

则根据视向速度的叠加:$$v_{rad} = v_{gal} + v_{rot}\cdot{\sin}i$$

可得出:

$$\displaystyle v_{rot} = \frac{v_{rad} - v_{gal}}{{\sin}i} = \frac{5850 - 5437.56}{0.39}$$ km⋅ s−1 $$=$$ 1057.54 km⋅ s−1

b) 根据向心加速度的公式:

$$\displaystyle \frac{v_{rot}^{2}}{r} = \frac{G \cdot M(r)}{r^{2}} $$

可得出:

$$\displaystyle M(r) = \frac{v_{rot}^{2} \cdot r}{G} \sim 4.0 \times 10^{42} $$ kg

然后,这里假设 7.8 kpc 以外的外盘对星系质量的贡献极小(原答案直接套用维里定律):

$$\displaystyle \frac{1}{2}v_{esc}^{2} = \int^{+\infty}_{r} \frac{G \cdot M(r)}{R^{2}}dR = \frac{G \cdot M(r)}{r} $$

就能算出:

$$\displaystyle v_{esc} = \sqrt{\frac{2G \cdot M(r)}{r}} = $$ 1492 km⋅ s−1

c) 第三题中 CII 吸收线的波长位于 1335 Å, 而实际光谱中,扣除掉哈勃流后,能从图中看见显著的吸收线蓝移,这个蓝移就是外流气体造成的结果:

$$\displaystyle \frac{\Delta \lambda}{\lambda} = \frac{\Delta v}{c}$$

如果吸收坑对应中心波长取 1332 Å的话:

$$\displaystyle \Delta v = 3 \times 10^{5}$$ km⋅ s−1 $$\displaystyle \frac{1332-1335}{1335} = -674.2$$ km⋅ s−1

并没有超过逃逸速度($$v_{esc}$$),因此气体流不出去。

拓展